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Systematic perturbation calculation of integrals with applications to physics
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In this paper we generalize and improve a method for calculating the period of a classical oscillator and
other integrals of physical interest, which was recently developed by some of the authors. We derive analytical
expressions that prove to be more accurate than those commonly found in the literature, and test the conver-
gence of the series produced by the approach.

DOI: 10.1103/PhysRevE.71.016704 PACS nunid)erd5.10.Db, 04.25-g
I. INTRODUCTION Xdx
There is great interest in the development of new methods = fk V() @D

for the treatment of nonlinear probleni3—-3]. Amore and

SéenZ 4] have recently considered the problem of calculat-whereQ(x) has simple zeros at. andx, and is positive in
ing the period of a classical oscillator with high precision.the interval x2.<x<x,. Such integrals appear in many
The method that they propose proves to be quite effectiv@ranches of classical mechanics as we will show shortly. In
and applicable with limited effort to a large spectrum of order to derive a simple analytical expression for the integral

problems. In fact, some of the problems that considered in we add and subtract a functid@o(x), which satisfies the
Ref. [4] are textbook examples, for which such a methodsgme boundary conditions, and write

provides very accurate solutions; remarkably such solutions

do not involve complicated transcendental functions but are X+ dx
expressed in terms of elementary functions. Amore and col- ' :J m
laborators have recently discussed mainly two strategies for X VROVUN
solving nonlinear problems. One of them is the direct treatwhere A(x) =[Q(x) - Qo(X)]/ Qq(X).

ment of the integral that gives the period of oscillation or any  The method that we propose consists of expanding the
other relevant property of the systeis], and the other is integrand in powers of\(x) which leads to a series of the
based on an improved Lindstedt-Poincaré technjgu&. In  form
both cases the authors resort to a sort of variational pertur-
bation theory like that often used in quantum mechanics and

(2)

o

other fields of theoretical physics to treat divergent series I= Z In, 3)
[8-10. where =0

The purpose of the present paper is twofold: first, we want ~ 12\ [ AYx)
to generalize the method ¢#] and to express it in a more |n:< )f ———dx (4)
systematic fashion; second, we want to extend the previous n x. VQo(X)

analysis to consider large orders and discuss the convergerr:gﬁd(z)zr(a+ D[(N(b+ DT (a=b+1)] is the binomial coeffi-

of the expansions that we obtain. We investigate the systent® \ ) )

atic calculation of integrals with applications in various ¢ient. Notice that if we choos€y(x) in such a way that
fields of theoretical physics, such as, for example, the periot?(X)| <1 for all x.<x<x, then the series3) converges

of nonlinear oscillations, the deflection of the light by the uniformly. The present method proves to be practical when
sun, and the precession of the perihelion of a planet orbiting/€ can obtain simple analytical expressions for a sufficiently
around the sun. We try to provide simple though sufficientlylarge number of integrals in E¢4).

accurate analytical formulas, and test the convergence of the Il HARMONIC APPROXIMATION

series that give rise to them. In doing so, we compare our '

results with those in recent literature. According to what was said above about the function
Q(x) we can write
Il. THE METHOD
Many physical problems reduce to the calculation of in- Q) =ROX)(X=x) (%, =X), ®)
tegrals of the kind where R(x) >0 in x_.<x<x,. A simple suitable reference
function Qq(x) for many physical problems is
- 2(y _
*Electronic address: paolo@cgic.ucol.mx Qo¥) = " (x = x)(x, =X), (6)
"Electronic address: fernande@dquimica.unlp.edu.ar wherew is an adjustable parameter, so that
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R(X) — w? this case we choos@(x)=E-V(x)=(A2-x?) [ 3+ (u/4)(A?
w2 ) +x2)], whereA>0 is the amplitude of the oscillations, and

o _ _ _ Qo=w*(A2-x?). Notice thatT=12l and thatA takes a simple
In order to simplify the equations still further, we intro- form:

duce the change of variable

A(x) =

1w 1
X XX A== =(A*+x3) - 2+—]
XL BTE s, (8) w2{4( )z
2 2
_ _ 1| uA? , 1
where 0< < 7. We can thus rewrite the integré?) as =2 T(l +cog §) - o’ + 5| (15
| = lf d¢ (9) Wherex=Acos# as follows from Eq.(8) with x,=-x_=A.
wJo V1+A Notice that the period depends only pr uA®.

. . The val fi rdin he PM fir rder
and the terms in the expansiéf) become e value ofw according o the S fo first orde

— m _ 4+ 3p
|n=1< 1/2>J A" do. (10) opus= \ g (16)

w\ n 0
. L ) yields
Clearly, the integral is independent of, but the partial
sums p
Apys= ———— CcOS . 17
N PMS 4+ 3p ( )
Suzgoln (1) Notice that|Apyd <1 for all p>-1.
n=

A most interesting feature of the PMS for this model is
will depend on that arbitrary parameter. It is therefore reathatl,,.;=0 for alln=0,1,...,.when o=wpys given by Eq.
sonable to require that the optimal value®hould satisfy (16). The calculation of the even terms is straightforward and
the principle of minimal sensitivityPMS) [11] which states  Yields the compact expression

that %
4 \ —1/2)(— 1/2) o p
T=z— -1 , = .
[;—S\‘:O_ (12) V4 +3p Eo( )< n 2n ¢ ¢ 4+3p
w

(18

If we choosew?=1+p in Eq. (15) then Eq.(9) gives us a
well-known exact expression for the peripd]

If we take into account the properties of the combinatorial
numbers and thavA/dw=-(2/w)(1+A), we can easily

prove that
oS 2N+1 T4 (P __da (19
Ez_ » In- (13 eadt Vi+p Jo Vi-ksirfa’

According to this equation, the PMS condition is equivalentwhere =p/[2(1+p)]. We thus obtain the alternative series
to Iy=0 which only takes place for odd values léffor real ~ €xpansion:

. For even values o we may instead resort to the alter- 1 1/2\2
native PMS condition?Sy/dw?=0, but this additional re- T= 2m ( ) & (20)
quirement will prove unnecessary as we will see later on. V1i+p pmo\ N

IV. ANHARMONIC OSCILLATORS When u<0 the potential of the oscillator exhibits two

barriers and_the amplitude of the motion cannot be larger

The periods of many anharmonic oscillators have bee?hanA —1/\=w. Consequently. the exact expression for the
widely studied[1-3] and therefore they are suitable bench- L= q Y. b

] . iod i i >-1. i
marks for new approaches. Here we consider a particle o?e.”Od is valid forp>-=1. The present se_rle($8) converges
: L OF . . : ._uniformly for p>-1 whereas the series in E@0) does not
unit mass moving in a one-dimensional anharmonic potentlalll

. ; converge for —-Kp<-2/3.
\e/i);;)reil?oﬁalcmate the period according to the well known The exact solutiox(t) for the Duffing oscillator satisfies

the virial theoremx?=x2+ux?, where f(x) stands for the

e V’de classical expectation value &fx(t)). It is most interesting to
JX \E——W (14) note that the value of in Xy(t)=A cos(wt+¢) that causes

B Xo(t) to satisfy the virial theorem for the Duffing oscillator is
whereE=V(x,) is the energy. V2wpums

In a recent paper Pelstet al. [2] (PKS) calculated the
leading term of the strong-coupling expansion for the fre-

A widely studied example is the Duffing oscillatft], quency of the Duffing oscillator by means of a series pro-
which corresponds to the potenti&f(x)=%x2+(ﬂ/4)x4. In  duced by the Lindstedt-Poincaré method with an adjustable

A. Duffing oscillator
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function of the ordeA2. The three curves correspond to the sec-
FIG. 1. Logarithmic plot of the errdbéN)—bOUbo as a function  ond order results for the present method, the LPLDE method of
of the orderN. Diamonds and crosses correspond to present resulis,7], and the method of Pelstet al, respectively. The horizontal
and those of Pelstet al, respectively. The dashed and dotted lineslines are the asymptotic values of the errtsse Fig. L
correspond to the linear fits of each data. The circles correspond to

the results of 7]. responding taN=2. It is interesting to notice that all three
methods yield an error which is always smaller than the

harmonic frequency. In the limitt—c they expanded the asymptotic one.

frequency for unit amplitude as

b,

b
w:\’;[bo+—l+—2
moop

B. Quadratic-sextic oscillator
+ ] (21)

We also consider the potentiad(x)=3x%+(u/6)x® be-
N I . . cause it has recently been treated by means of the combina-
IF T IS the '(\,{Bh partial sum for the seried.8) we obtain tion of the methods of linearization and harmonic balance by
the coefficientd,” to orderN as Wu and Li[3] (WL). These authors carry out calculations of
low order; their best approach is

2 \e"g
b = lim ———= . . (22
O e T oSN (— 1>J<— 1/2)(— 1/2) (22 — 247 A
. - . . I e e ———————— p - ILL .
=0\ 9 ] 2] V80 + 5@ + V4096 + 5120 + 925?
Figure 1 shows the logarithmic relative error calculated with (24)
this expression, with the values bg\“ given by Pelsteet al. If we choosew=1{(p+3)/6 in Eq.(9) with
[2] and the results of Amoret al. [5,7]. We also show the
linear fits for the first two sets of data. 3+ p—6w?+ pcod )2+ pcod H)*
Our series has by far the best rate of convergence. In fact, A= 5 , (25)
although all three series exhibit exponential convergence 6w
b — b, we obtain an exact expression for the period:
0 — a—a—BN
=€ , 23 —
bo 29 2V3 (7 do
Texact: V f (26)
the slopes of our linear fit is much greateys Presen=|n(9) Vp+3Jo \/ p
~2.1972, compared t@"*S~1.11[2]. Moreover, our ex- 1+ p+ 3,(005‘2 0+ cog' )

pression(22), which is much simpler than the one of Pelster
et al. [2], enables us to calculate the slopeexactly. In this case the greatest amplitude far<0 satisfiesp,

In Fig. 2 we compare the logarithmic relative error for the:,uA‘,_‘:—l.
frequency calculated to second order with the three methods The application of our method is similar to that for the
as a function op. The results for the method of Pelstdral.  Duffing oscillator discussed above. In order to keep our
are obtained by means of E@2) of their paper[2].1 Inthe  equations as simple as possible we use the optimal value of
limit p— o0 one recovers the asymptotic error of Fig. 1, cor-  of first order to all orders:

V5p+8

1 . . . .
Equation (42) of [2] contains a typo: the second term in the wPMS:Ta (27)

numerator should readyd2wj instead of &/ w},
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which leads to The expressions thus obtained by our method through
order three are not as accurate as the one of Wu ar24l.i
At fourth order we have a formula that is not more compli-

Apys= p [8 cos 2+ cos 4. (29) cated than Eq(24) and is certainly more accurate for all
3(5p +8) values ofp:

T = VEW(6097185)4 + 378214405 + 892723202 + 94371840 + 3774873

29
23045p + 8)°/2 (29)

Notice, for example, that tially. Indeed, the error decreasese&§™?N, where it is not
- hard to see thaB=In(5/3)~0.5108.
lim \pT ®@°=8.413092631,

p—x

C. Other parity-invariant anharmonic oscillators

The anharmonic oscillators with even potentials of the

lim pTW-=8.4081, lim\pT® =8.41292 form

p—® p—o0
2 2K

and that V() = = + &
2 2K’

K=2,3,... (30
Tea%p=-0.9 =10.93467798,
exhibit many features in common. For example, the pefiod

WY p=-0.9=10.62, T¥(p=-0.9=10.67. depends on the parameter uA?¢"? and satisfies a smafi-

expansion
Our method enables us to derive explicit equations at all

orde.rs. If we calculate the integrals in Eq.0) exactly, we 7= ap (31)
obtain ek
S Ax (— 1/2)[ p }“ and a largep expansion
T=2 — o o | T
g) \5p+8\ n /[ 3(5p+8) ] " 1
= — . _j
where T \Fpgoclp ’ (32)
na ik seen| M\ (Ko ) [n—ke The optimal value ofv given by our method is of the form
Th=2 2 2 2% 1, 2n-2k,~ kg
k1=0 k=0 k=0 ke /\ky ks 5> _l+kp (33)
W=,
In Fig. 3 we plot the logarithmic relative error of the 2

period forp— co as a function of the order of approximation. \\herex is the same to all orders fé¢=2 as we have already
Once again we see that our expansion converges exponefliscyssed above. It changes slowly wihfor the sextic
oscillator and more rapidly for greater valueskaf In order

to make the discussion simpler we just consider the conver-
gence of the series for the most difficult case given by

0 . . : .

T T T

co= lim VpT. (34)
pce

For K=5 the value ofk given by the PMS of first order does
not give us a convergent series @y The reason is that the
maximum value ofA| is greater than 1 under such condition.
Values of x given by the PMS of higher order correct this
problem.

Let Ry andR,, be the maximum and minimum values of
R(x) [Ry=R(x)=R,>0 for all x_.<x<x,] andAy, andA,
the corresponding values &f. If we choose

N 2>_Ru*Rn
wb—T,

N
In([by" - byl /by

(35
FIG. 3. Logarithmic plot of the errdbg\')—bovbo as a function
of the orderN for the quadratic sextic oscillator. then we have
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2R(X) - Ry - R 2 - x®)cosf
A = 220~ Ru ~ R (36) p= Uemx)C0s6 (43)
Rv + R, Xi + AX Xo + X2
and It is clear that all the perturbation corrections of odd order
vanish wherw=wpysand we obtain the same series as in the
0<Ay= Ru=Rm__ Ap<1. (37)  case of the Duffing oscillator:

Ru + Rn

V27 (=12\(-1/2\ . & - x3)
Notice that the value of» (35) that balances the maximum T=—2 (-1i| oi H, =g,
and minimum values oA makes|A(x)| <1 for all values of i=0 J J Xt X+
the coordinate. (44)

Numerical calculation suggests that the value giiven
by the PMS at increasingly greater order approackgs
=(2wi-1)/p. We find thatx, is suitable for high-order cal-
culations but it is not necessarily the most convenient one fo
the derivation of simple and accurate analytical expressions 1 20¢E+ XX +x2)?
like those obtained from the PMS of low order. E G_qu = W

Plots of ¢”™*" vs « obtained by partial sums of order T
2N+1 show that the PMS always give the best approach to In this case we obtain the exact solution by means of the
the exact value at each order. Plots dfdff"*"—co)/c| vs  integral
N suggest that our partial sums wiky converge exponen- \5 ™ de
tially for all anharmonic oscillator$30). T=—

For negative values of. there is periodic motion pro-
vided thatp>-1. Plots of |I1I(T(N)—T)/T| (p=-0.9 vsNfor  hat yields the serieg44) on expansion in a Taylor series
anharmonic oscillators wittK=3,4,5 show two almost gpoutg=0.
straight lines, one for eveN lying always lower than the  An interesting application of the main equations for the
corresponding one for odd. In other words, the partial quadratic-cubic anharmonic oscillator is the precession of the
sums with everN and oddN converge exponentially to the perihelion of a planet. As shown in a previous paper by some

The potential-energy function exhibits a maximum
V(xy)=1/(6u?) at xy=—1/u; therefore, there will be peri-
?dic motion for all values of energy satisfying

(45)

— (46)
o Jog V1+£&cosh

actual value off(p=-0.9. of the authorg4] the expression for the angular precession
A¢ that appears in most textbooks can be rewritten as
D. Quadratic cubic oscillator z, dz
The treatment of noneven potentials is slightly different. Agp= sz V(z. - 2)(z-2)[1- 2GM(z+ 27 +2,)] - 2m,

We illustrate the procedure by means of the simplest such

oscillator: (47)
23 wherez=1/r, z.=1/r, andr_<r, are the shortegperihelig
VX)=—+u_. (38) and largestaphelia distances from the sun. Hefe is the
2 3 gravitational constant anbll is a mass. Taking into account
The factorization ofQ(x)=E-V(x) leads to the expressions for the quartic-cubic oscillator derived above
we have
Q(X) = (X =X)(X; = X)(bp + b1X), (39) 5GM
e 1o = _22M
where w=V1-3GM(z,+z)=1/1 o (48)
_ XeXo _ Xy + X where the semilatus rectuinis given by 1L=(z.+z)/2.
bo=-> 5 b= 7, We also obtai
2(X5 + X, X_+X9) 2(X5 + X X_ + X9) € also obtain
(40) a-L
GM(z,-z) GM a
and A=§cosH, &= Z = ,
3GM(z,+z)-1 6GM-L
3 X +X

M=—CT 5 5. (41) (49)
22X+ XX+ XS . L . .
_ _ ~wherea=(1/z,+1/z.)/2 is the semimajor axis of the ellipse.
A straightforward calculation based on the change of variyye thus obtain the series

able (8) shows that the PMS at first order yields

1w (=12\(- 112\ .
V(=22 - 4x,x_— ) A¢:27T[—2 (= 1)J< : )( oi )le - 1] (50)
wpps= (42) @j=0 J J
W2 2
2VXE + X X+ XE . o .
that is a generalization to all orders of an expression of sec-
and ond order developed by Amore and Sa¢hk
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#x10° and treat each integral in the way indicated above. However,
we do not deem it necessary to discuss such calculation here
because it does not add anything new to what was already
done.

We can apply present method to anharmonic oscillators
with more than two terms in the potential-energy function; as

an example consider

V(X) = ax? + agx® + ax*. (51)

6x10°

S ax10”

If we write

Q(X) = E = V(X) = (X = X)(X: = X)(bp + byx + byx?),
(52

2x10° -

L L
100 125 150 175 200
a(m)

then we obtain

__ 2 2
FIG. 4. Precession of the orbit of a plarit seconds of degre¢e E=-xx[ag+ag(x, +x) + a4 +xx +x0)], (53)

calculated assuming M=1.97x 10° kg, G/c?=7.425

% 1073% m/kg, ande=0.2506 as a function & (i.e., the average of bo = ay + ag(X, + X_) + a4(¢ + X.x_ + %), (54)

perihelion and apheligrfor values close to a black hole. The solid

line is the exact result; the thin line corresponds to the asymptotic b, =az+a,(x, +x), (55)

formula; the other lines correspond to the different orders to which

our approximation has been applied. b, =ay, (56)
In Fig. 4 we plot the angular precession of the orbit of aand

planet obtained using the exact formula and the approxima- bo + byx + byx? — w?

tions given by partial sums of our serigs0) for values ofa A= 2 (57)

very close to the Schwartzchild radius. In Fig. 5 we plot the

logarithm of the relative error over the angular precession. It follows from the PMS conditiori; =0 that

We notice that our approximation is able to reproduce the | > >

exact result very accurately, even for very snaalHowever, wpps= V180g + 80y (X + x,) + 205(3x" + 2X,x + 3X,) )

our series does not reproduce the singular point of the inte- 4

gral (47) exactly, because this singularity is due to the ap- (58)

pearance of the third root of the cubic polynomial inside the ) ] ] ] ]
integration interval. In other words, the factor functigy) ~ The expression of the period to order zero is quite simple
is negative for some values @fwhena is smaller than the T%A’Z'O:\’ZW/“’PMS but the expression to second order
critical valuea,=97.9173. In spite of this limitation, the par- = \2(lo*12), although simple, is rather long to be shown
tial sums of our series approach the exact value of the intdlere.
gral as we add more terms. We can improve our results by

. . : E. The simpl dul
splitting the integral into two parts at the new zero@(z) e simple penduium

The method just outlined also applies to nonpolynomial
potentials. As a representative example, we consider the
simple pendulum, and without loss of generality we choose
unit mass and length. We obtain particularly simple expres-
sions if we expand the potential

0 T

S
T

% V(¢) =1 - cos¢ (59

= e in a Taylor series. For example, in the first approximation
g T . T 7 V(¢)= ¢?/2 is harmonic and the period is independent of
2 — \\_\ the amplitudeA. The resulting textbook expression for the
= -- 26, Tl period is valid for small values oA. In order to test the

= o o i‘; Tl - accuracy of the approximations we consider the exact ex-

N pression for the perioffl2]

(60)

g da
100 200 300 400 500 '
. 0 LA La
@ m \/1—S|rF§sm2§
FIG. 5. Logarithmic plot of the error over the precession of the

perihelion as a functiora. The different lines correspond to the  If we keep one more term in the expansigtyp) = ¢?/2
different orders to which our approximation has been applied. - ¢*/24 we can apply all the results for the Duffing oscillator

,4()0 1 | 1 | 1 | . | . T= zf
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with ©=-1/6. The leading term of the seri€s8) yields in VB(A% = 2402 + 192
this case wpps= (62)
48
I at first order of PMS. Keeping just the leading term of the
T= 2w ' (61) series(3) we obtain
V8A 163
T= ) (63)

T a4 _ 2 )
Taking into account terms of higher order of the sefiEg) VAT 2487+ 192

does not improve results because the mayor source of error his expression gives better results than the preceding one,

the expansion of the potential only through fourth order.  and in this case the term of second order improves the accu-
The next approximation in the expansion of the potentialracy (the term of first order is zero because of the BM&8e

is V() = ¢?12-¢*124+¢8/720. The present method yields thus obtain

- V37(253A8 — 11904 + 233280\ — 221184@\2 + 8847360
- 15(A% - 24A2 + 192 '

(64)

We can proceed in this way, adding more terms to the expargence rate observed is probably due to the fact that the PMS
sion of the potential-energy function and to the expansion ofvorks better on the period than on the frequency.
the integral, and increase the accuracy of the expression for The approach that we propose in this paper is closely

the period as much as necessary. related to what is known as variational perturbation method,
which was extensively applied to quantum mechanics and
V. CONCLUSIONS other fields of theoretical physi¢8—10 (see also additional

. ] ] references cited if2]). In particular, the method of nonlinear
In this paper we propose a technique for solving a class ofyappingd 8], which focuses only on the series itself, is more
integrals with applications in theoretical physics. We providegeneral that the standard variational perturbation theory. The
a systematic general method for writing those integrals in &gnlinear mappings can also be applied to the problems con-
form convenient for exact calculation and for their expansionsigered here. However, we have resorted to the technique
in series. We show that the resulting series are suitable for ajtiined above because it has facilitated the analysis of the

values of the relevant physical parameters, from unstablgyonyergence of the series by focusing on properties of the
equilibrium through the strong coupling, and for all the an-jptegrals,

harmonic oscillators considered here. We easily derive
simple low-order analytical expressions that are more accu-
rate than those in the literature, and we have shown that the
rate of convergence of our series is greater than those pro- P.A. acknowledges support of Conacyt Grant No. CO1-
posed by other authors. In some cases the greater convet0633/A-1.
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