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In this paper we generalize and improve a method for calculating the period of a classical oscillator and
other integrals of physical interest, which was recently developed by some of the authors. We derive analytical
expressions that prove to be more accurate than those commonly found in the literature, and test the conver-
gence of the series produced by the approach.
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I. INTRODUCTION

There is great interest in the development of new methods
for the treatment of nonlinear problemsf1–3g. Amore and
Sáenzf4g have recently considered the problem of calculat-
ing the period of a classical oscillator with high precision.
The method that they propose proves to be quite effective
and applicable with limited effort to a large spectrum of
problems. In fact, some of the problems that considered in
Ref. f4g are textbook examples, for which such a method
provides very accurate solutions; remarkably such solutions
do not involve complicated transcendental functions but are
expressed in terms of elementary functions. Amore and col-
laborators have recently discussed mainly two strategies for
solving nonlinear problems. One of them is the direct treat-
ment of the integral that gives the period of oscillation or any
other relevant property of the systemf4g, and the other is
based on an improved Lindstedt-Poincaré techniquef5–7g. In
both cases the authors resort to a sort of variational pertur-
bation theory like that often used in quantum mechanics and
other fields of theoretical physics to treat divergent series
f8–10g.

The purpose of the present paper is twofold: first, we want
to generalize the method off4g and to express it in a more
systematic fashion; second, we want to extend the previous
analysis to consider large orders and discuss the convergence
of the expansions that we obtain. We investigate the system-
atic calculation of integrals with applications in various
fields of theoretical physics, such as, for example, the period
of nonlinear oscillations, the deflection of the light by the
sun, and the precession of the perihelion of a planet orbiting
around the sun. We try to provide simple though sufficiently
accurate analytical formulas, and test the convergence of the
series that give rise to them. In doing so, we compare our
results with those in recent literature.

II. THE METHOD

Many physical problems reduce to the calculation of in-
tegrals of the kind

I =E
x−

x+ dx
ÎQsxd

, s1d

whereQsxd has simple zeros atx− andx+ and is positive in
the interval x−,x,x+. Such integrals appear in many
branches of classical mechanics as we will show shortly. In
order to derive a simple analytical expression for the integral
I we add and subtract a functionQ0sxd, which satisfies the
same boundary conditions, and write

I =E
x−

x+ dx
ÎQ0sxdÎ1 + Dsxd

, s2d

whereDsxd;fQsxd−Q0sxdg /Q0sxd.
The method that we propose consists of expanding the

integrand in powers ofDsxd which leads to a series of the
form

I = o
n=0

`

In, s3d
where

In = S− 1/2

n
DE

x−

x+ Dnsxd
ÎQ0sxd

dx s4d

ands a
b

d=Gsa+1dfsGsb+1dGsa−b+1dg is the binomial coeffi-
cient. Notice that if we chooseQ0sxd in such a way that
uDsxdu,1 for all x−,x,x+ then the seriess3d converges
uniformly. The present method proves to be practical when
we can obtain simple analytical expressions for a sufficiently
large number of integrals in Eq.s4d.

III. HARMONIC APPROXIMATION

According to what was said above about the function
Qsxd we can write

Qsxd = Rsxdsx − x−dsx+ − xd, s5d

where Rsxd.0 in x−,x,x+. A simple suitable reference
function Q0sxd for many physical problems is

Q0sxd = v2sx − x−dsx+ − xd, s6d

wherev is an adjustable parameter, so that
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Dsxd =
Rsxd − v2

v2 . s7d

In order to simplify the equations still further, we intro-
duce the change of variable

x =
x+ + x−

2
+

x+ − x−

2
cosu, s8d

where 0øuøp. We can thus rewrite the integrals2d as

I =
1

v
E

0

p du

Î1 + D
s9d

and the terms in the expansions4d become

In =
1

v
S− 1/2

n
DE

0

p

Dn du. s10d

Clearly, the integralI is independent ofv, but the partial
sums

SN = o
n=0

N

In s11d

will depend on that arbitrary parameter. It is therefore rea-
sonable to require that the optimal value ofv should satisfy
the principle of minimal sensitivitysPMSd f11g which states
that

]SN

]v
= 0. s12d

If we take into account the properties of the combinatorial
numbers and that]D /]v=−s2/vds1+Dd, we can easily
prove that

]SN

]v
= −

2N + 1

v
IN. s13d

According to this equation, the PMS condition is equivalent
to IN=0 which only takes place for odd values ofN for real
v. For even values ofN we may instead resort to the alter-
native PMS condition]2SN/]v2=0, but this additional re-
quirement will prove unnecessary as we will see later on.

IV. ANHARMONIC OSCILLATORS

The periods of many anharmonic oscillators have been
widely studiedf1–3g and therefore they are suitable bench-
marks for new approaches. Here we consider a particle of
unit mass moving in a one-dimensional anharmonic potential
Vsxd and calculate the period according to the well known
expression

T =E
x−

x+ Î2dx
ÎE − Vsxd

, s14d

whereE=Vsx±d is the energy.

A. Duffing oscillator

A widely studied example is the Duffing oscillatorf1g,
which corresponds to the potentialVsxd= 1

2x2+sm /4dx4. In

this case we chooseQsxd=E−Vsxd=sA2−x2d f 1
2 +sm /4dsA2

+x2dg, whereA.0 is the amplitude of the oscillations, and
Q0=v2sA2−x2d. Notice thatT=Î2I and thatD takes a simple
form:

D =
1

v2Fm

4
sA2 + x2d − v2 +

1

2
G

=
1

v2FmA2

4
s1 + cos2 ud − v2 +

1

2
G , s15d

wherex=A cosu as follows from Eq.s8d with x+=−x−=A.
Notice that the period depends only onr=mA2.

The value ofv according to the PMS to first order

vPMS=Î4 + 3r

8
s16d

yields

DPMS=
r

4 + 3r
cos 2u. s17d

Notice thatuDPMSu,1 for all r.−1.
A most interesting feature of the PMS for this model is

that I2n+1=0 for all n=0,1, . . .,whenv=vPMS given by Eq.
s16d. The calculation of the even terms is straightforward and
yields the compact expression

T =
4p

Î4 + 3r
o
n=0

`

s− 1dnS− 1/2

n
DS− 1/2

2n
Dj2n, j =

r

4 + 3r
.

s18d

If we choosev2=1+r in Eq. s15d then Eq.s9d gives us a
well-known exact expression for the periodf1g

Texact=
4

Î1 + r
E

0

p/2 da

Î1 − k sin2 a
, s19d

wherek=r / f2s1+rdg. We thus obtain the alternative series
expansion:

T =
2p

Î1 + r
o
n=0

` S− 1/2

n
D2

kn. s20d

When m,0 the potential of the oscillator exhibits two
barriers and the amplitude of the motion cannot be larger
thanAL=1/Î−m. Consequently, the exact expression for the
period is valid forr.−1. The present seriess18d converges
uniformly for r.−1 whereas the series in Eq.s20d does not
converge for −1,r,−2/3.

The exact solutionxstd for the Duffing oscillator satisfies
the virial theoremẋ2=x2+mx4, where fsxd stands for the
classical expectation value offsxstdd. It is most interesting to
note that the value ofv in x0std=A cossvt+fd that causes
x0std to satisfy the virial theorem for the Duffing oscillator is
Î2vPMS.

In a recent paper Pelsteret al. f2g sPKSd calculated the
leading term of the strong-coupling expansion for the fre-
quency of the Duffing oscillator by means of a series pro-
duced by the Lindstedt-Poincaré method with an adjustable
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harmonic frequency. In the limitm→` they expanded the
frequency for unit amplitude as

v = ÎmFb0 +
b1

m
+

b2

m2 + ¯ G . s21d

If TsNd is theNth-partial sum for the seriess18d we obtain
the coefficientb0

sNd to orderN as

b0
sNd = lim

m→`

2p

ÎmTsNd =
Î3

2o j=0

N S− 1

9
D jS− 1/2

j
DS− 1/2

2j
D . s22d

Figure 1 shows the logarithmic relative error calculated with
this expression, with the values ofb0

sNd given by Pelsteret al.
f2g and the results of Amoreet al. f5,7g. We also show the
linear fits for the first two sets of data.

Our series has by far the best rate of convergence. In fact,
although all three series exhibit exponential convergence

Ub0
sNd − b0

b0
U = e−a−bN, s23d

the slopeb of our linear fit is much greater:b present=lns9d
<2.1972, compared tobPKS<1.11 f2g. Moreover, our ex-
pressions22d, which is much simpler than the one of Pelster
et al. f2g, enables us to calculate the slopeb exactly.

In Fig. 2 we compare the logarithmic relative error for the
frequency calculated to second order with the three methods
as a function ofr. The results for the method of Pelsteret al.
are obtained by means of Eq.s42d of their paperf2g.1 In the
limit r→` one recovers the asymptotic error of Fig. 1, cor-

responding toN=2. It is interesting to notice that all three
methods yield an error which is always smaller than the
asymptotic one.

B. Quadratic-sextic oscillator

We also consider the potentialVsxd= 1
2x2+sm /6dx6 be-

cause it has recently been treated by means of the combina-
tion of the methods of linearization and harmonic balance by
Wu and Li f3g sWLd. These authors carry out calculations of
low order; their best approach is

TWL =
24p

Î80 + 50r + Î4096 + 5120r + 925r2
, r = mA4.

s24d

If we choosev=Îsr+3d /6 in Eq. s9d with

D =
3 + r − 6v2 + r cossud2 + r cossud4

6v2 , s25d

we obtain an exact expression for the period:

Texact=
2Î3

Îr + 3
E

0

p du

Î1 +
r

r + 3
scos2 u + cos4 ud

. s26d

In this case the greatest amplitude form,0 satisfiesrL
=mAL

4=−1.
The application of our method is similar to that for the

Duffing oscillator discussed above. In order to keep our
equations as simple as possible we use the optimal value of
v of first order to all orders:

vPMS=
Î5r + 8

4
, s27d

1Equation s42d of f2g contains a typo: the second term in the
numerator should read 3g/2v0

2 instead of 3g/v0
2.

FIG. 1. Logarithmic plot of the errorub0
sNd−b0u /b0 as a function

of the orderN. Diamonds and crosses correspond to present results
and those of Pelsteret al., respectively. The dashed and dotted lines
correspond to the linear fits of each data. The circles correspond to
the results off7g.

FIG. 2. Logarithmic plot of the erroruv2−vexactu /vexact as a
function of the ordermA2. The three curves correspond to the sec-
ond order results for the present method, the LPLDE method of
f5,7g, and the method of Pelsteret al., respectively. The horizontal
lines are the asymptotic values of the errorsssee Fig. 1d.
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which leads to

DPMS=
r

3s5r + 8d
f8 cos 2u + cos 4ug. s28d

The expressions thus obtained by our method through
order three are not as accurate as the one of Wu and Lis24d.
At fourth order we have a formula that is not more compli-
cated than Eq.s24d and is certainly more accurate for all
values ofr:

Ts4d =
Î2ps6097185r4 + 37821440r3 + 89272320r2 + 94371840r + 3774873d

2304s5r + 8d9/2 . s29d

Notice, for example, that

lim
r→`

ÎrT exact= 8.413092631,

lim
r→`

ÎrTWL = 8.4081, lim
r→`

ÎrTs4d = 8.41292

and that

T exactsr = − 0.9d = 10.93467798,

TWLsr = − 0.9d = 10.62, Ts4dsr = − 0.9d = 10.67.

Our method enables us to derive explicit equations at all
orders. If we calculate the integrals in Eq.s10d exactly, we
obtain

T = o
n=0

`
4p

Î5r + 8
S− 1/2

n
DF r

3s5r + 8dGn

Jn,

where

Jn ; o
k1=0

n

o
k2=0

k1

o
k3=0

n−k1

23k1−nS n

k1
DSk1

k2
DSn − k1

k3
Ddk1,2n−2k2−4k3

.

In Fig. 3 we plot the logarithmic relative error of the
period forr→` as a function of the order of approximation.
Once again we see that our expansion converges exponen-

tially. Indeed, the error decreases ase−a−bN, where it is not
hard to see thatb=lns5/3d<0.5108.

C. Other parity-invariant anharmonic oscillators

The anharmonic oscillators with even potentials of the
form

Vsxd =
x2

2
+

mx2K

2K
, K = 2,3, . . . s30d

exhibit many features in common. For example, the periodT
depends on the parameterr=mA2K−2 and satisfies a small-r
expansion

T = o
j=0

`

ajr
j s31d

and a large-r expansion

T =
1
Îr

o
j=0

`

cjr
−j . s32d

The optimal value ofv given by our method is of the form

v2 =
1 + kr

2
, s33d

wherek is the same to all orders forK=2 as we have already
discussed above. It changes slowly withN for the sextic
oscillator and more rapidly for greater values ofK. In order
to make the discussion simpler we just consider the conver-
gence of the series for the most difficult case given by

c0 = lim
r→`

ÎrT. s34d

For K=5 the value ofk given by the PMS of first order does
not give us a convergent series forc0. The reason is that the
maximum value ofuDu is greater than 1 under such condition.
Values ofk given by the PMS of higher order correct this
problem.

Let RM andRm be the maximum and minimum values of
Rsxd fRM ùRsxdùRm.0 for all x−,x,x+g andDM andDm

the corresponding values ofD. If we choose

vb
2 =

RM + Rm

2
, s35d

then we have
FIG. 3. Logarithmic plot of the errorub0

sNd−b0u /b0 as a function
of the orderN for the quadratic sextic oscillator.
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Dsxd =
2Rsxd − RM − Rm

RM + Rm
s36d

and

0 , DM =
RM − Rm

RM + Rm
= − Dm , 1. s37d

Notice that the value ofv s35d that balances the maximum
and minimum values ofD makesuDsxdu,1 for all values of
the coordinate.

Numerical calculation suggests that the values ofk given
by the PMS at increasingly greater order approacheskb
=s2vb

2−1d /r. We find thatkb is suitable for high-order cal-
culations but it is not necessarily the most convenient one for
the derivation of simple and accurate analytical expressions
like those obtained from the PMS of low order.

Plots of c0
s2N+1d vs k obtained by partial sums of order

2N+1 show that the PMS always give the best approach to
the exact value at each order. Plots of lnusc0

s2N+1d−c0d /c0u vs
N suggest that our partial sums withkb converge exponen-
tially for all anharmonic oscillatorss30d.

For negative values ofm there is periodic motion pro-
vided thatr.−1. Plots of lnusTsNd−Td /Tu sr=−0.9d vs N for
anharmonic oscillators withK=3,4,5 show two almost
straight lines, one for evenN lying always lower than the
corresponding one for oddN. In other words, the partial
sums with evenN and oddN converge exponentially to the
actual value ofTsr=−0.9d.

D. Quadratic cubic oscillator

The treatment of noneven potentials is slightly different.
We illustrate the procedure by means of the simplest such
oscillator:

Vsxd =
x2

2
+ m

x3

3
. s38d

The factorization ofQsxd=E−Vsxd leads to

Qsxd = sx − x−dsx+ − xdsb0 + b1xd, s39d

where

b0 = −
x+x−

2sx+
2 + x+x− + x−

2d
, b1 = −

x+ + x−

2sx+
2 + x+x− + x−

2d
,

s40d

and

m = −
3

2

x− + x+

x+
2 + x+x− + x+

2 . s41d

A straightforward calculation based on the change of vari-
able s8d shows that the PMS at first order yields

vPMS=
Îs− x+

2 − 4x+x− − x−
2d

2Îx+
2 + x+x− + x−

2
s42d

and

D =
sx+

2 − x−
2dcosu

x+
2 + 4x+x− + x−

2 . s43d

It is clear that all the perturbation corrections of odd order
vanish whenv=vPMSand we obtain the same series as in the
case of the Duffing oscillator:

T =
Î2p

v
o
j=0

`

s− 1d jS− 1/2

j
DS− 1/2

2j
Dj2j, j =

sx+
2 − x−

2d
x+

2 + 4x+x− + x−
2 .

s44d

The potential-energy function exhibits a maximum
VsxMd=1/s6m2d at xM =−1/m; therefore, there will be peri-
odic motion for all values of energy satisfying

E ,
1

6m2 =
2sx+

2 + x+x− + x−
2d2

27sx+ + x−d2 . s45d

In this case we obtain the exact solution by means of the
integral

T =
Î2

v
E

0

p du

Î1 + j cosu
s46d

that yields the seriess44d on expansion in a Taylor series
aboutj=0.

An interesting application of the main equations for the
quadratic-cubic anharmonic oscillator is the precession of the
perihelion of a planet. As shown in a previous paper by some
of the authorsf4g the expression for the angular precession
Df that appears in most textbooks can be rewritten as

Df = 2E
z−

z+ dz
Îsz+ − zdsz− z−df1 − 2GMsz+ z− + z+dg

− 2p,

s47d

wherez=1/r, z±=1/r± andr−, r+ are the shortestsperiheliad
and largestsapheliad distances from the sun. HereG is the
gravitational constant andM is a mass. Taking into account
the expressions for the quartic-cubic oscillator derived above
we have

v = Î1 − 3GMsz+ + z−d =Î1 −
6GM

L
, s48d

where the semilatus rectumL is given by 1/L=sz++z−d /2.
We also obtain

D = j cosu, j =
GMsz+ − z−d

3GMsz+ + z−d − 1
=

GMÎa − L

a

6GM − L
,

s49d

wherea=s1/z++1/z−d /2 is the semimajor axis of the ellipse.
We thus obtain the series

Df = 2pF 1

v
o
j=0

`

s− 1d jS− 1/2

j
DS− 1/2

2j
Dj2j − 1G s50d

that is a generalization to all orders of an expression of sec-
ond order developed by Amore and Sáenzf4g.

SYSTEMATIC PERTURBATION CALCULATION OF… PHYSICAL REVIEW E 71, 016704s2005d

016704-5



In Fig. 4 we plot the angular precession of the orbit of a
planet obtained using the exact formula and the approxima-
tions given by partial sums of our seriess50d for values ofa
very close to the Schwartzchild radius. In Fig. 5 we plot the
logarithm of the relative error over the angular precession.
We notice that our approximation is able to reproduce the
exact result very accurately, even for very smalla. However,
our series does not reproduce the singular point of the inte-
gral s47d exactly, because this singularity is due to the ap-
pearance of the third root of the cubic polynomial inside the
integration interval. In other words, the factor functionRsud
is negative for some values ofu whena is smaller than the
critical valueac=97.9173. In spite of this limitation, the par-
tial sums of our series approach the exact value of the inte-
gral as we add more terms. We can improve our results by
splitting the integral into two parts at the new zero ofQszd

and treat each integral in the way indicated above. However,
we do not deem it necessary to discuss such calculation here
because it does not add anything new to what was already
done.

We can apply present method to anharmonic oscillators
with more than two terms in the potential-energy function; as
an example consider

Vsxd = a2x
2 + a3x

3 + a4x
4. s51d

If we write

Qsxd = E − Vsxd = sx − x−dsx+ − xdsb0 + b1x + b2x
2d,

s52d

then we obtain

E = − x+x−fa2 + a3sx+ + x−d + a4sx+
2 + x+x− + x−

2dg, s53d

b0 = a2 + a3sx+ + x−d + a4sx+
2 + x+x− + x−

2d, s54d

b1 = a3 + a4sx+ + x−d, s55d

b2 = a4, s56d

and

D =
b0 + b1x + b2x

2 − v2

v2 . s57d

It follows from the PMS conditionI1=0 that

vPMS=
Î16b0 + 8b1sx− + x+d + 2b2s3x−

2 + 2x+x− + 3x+
2d

4
.

s58d

The expression of the period to order zero is quite simple
T<Î2I0=Î2p /vPMS but the expression to second orderT
<Î2sI0+ I2d, although simple, is rather long to be shown
here.

E. The simple pendulum

The method just outlined also applies to nonpolynomial
potentials. As a representative example, we consider the
simple pendulum, and without loss of generality we choose
unit mass and length. We obtain particularly simple expres-
sions if we expand the potential

Vsfd = 1 − cosf s59d

in a Taylor series. For example, in the first approximation
Vsfd<f2/2 is harmonic and the period is independent of
the amplitudeA. The resulting textbook expression for the
period is valid for small values ofA. In order to test the
accuracy of the approximations we consider the exact ex-
pression for the periodf12g

T = 2E
0

p da

Î1 − sin2 A

2
sin2 a

2

. s60d

If we keep one more term in the expansionVsfd<f2/2
−f4/24 we can apply all the results for the Duffing oscillator

FIG. 4. Precession of the orbit of a planetsin seconds of degreed
calculated assuming M =1.9731030 kg, G/c2=7.425
310−30 m/kg, ande=0.2506 as a function ofa si.e., the average of
perihelion and apheliond for values close to a black hole. The solid
line is the exact result; the thin line corresponds to the asymptotic
formula; the other lines correspond to the different orders to which
our approximation has been applied.

FIG. 5. Logarithmic plot of the error over the precession of the
perihelion as a functiona. The different lines correspond to the
different orders to which our approximation has been applied.
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with m=−1/6. The leading term of the seriess18d yields in
this case

T =
4Î2p

Î8 − A2
. s61d

Taking into account terms of higher order of the seriess18d
does not improve results because the mayor source of error is
the expansion of the potential only through fourth order.

The next approximation in the expansion of the potential
is Vsfd<f2/2−f4/24+f6/720. The present method yields

vPMS=
Î6sA4 − 24A2 + 192d

48
s62d

at first order of PMS. Keeping just the leading term of the
seriess3d we obtain

T =
16Î3p

ÎA4 − 24A2 + 192
. s63d

This expression gives better results than the preceding one,
and in this case the term of second order improves the accu-
racy sthe term of first order is zero because of the PMSd. We
thus obtain

T =
Î3ps253A8 − 11904A6 + 233280A4 − 2211840A2 + 8847360d

15sA4 − 24A2 + 192d
. s64d

We can proceed in this way, adding more terms to the expan-
sion of the potential-energy function and to the expansion of
the integral, and increase the accuracy of the expression for
the period as much as necessary.

V. CONCLUSIONS

In this paper we propose a technique for solving a class of
integrals with applications in theoretical physics. We provide
a systematic general method for writing those integrals in a
form convenient for exact calculation and for their expansion
in series. We show that the resulting series are suitable for all
values of the relevant physical parameters, from unstable
equilibrium through the strong coupling, and for all the an-
harmonic oscillators considered here. We easily derive
simple low-order analytical expressions that are more accu-
rate than those in the literature, and we have shown that the
rate of convergence of our series is greater than those pro-
posed by other authors. In some cases the greater conver-

gence rate observed is probably due to the fact that the PMS
works better on the period than on the frequency.

The approach that we propose in this paper is closely
related to what is known as variational perturbation method,
which was extensively applied to quantum mechanics and
other fields of theoretical physicsf8–10g ssee also additional
references cited inf2gd. In particular, the method of nonlinear
mappingsf8g, which focuses only on the series itself, is more
general that the standard variational perturbation theory. The
nonlinear mappings can also be applied to the problems con-
sidered here. However, we have resorted to the technique
outlined above because it has facilitated the analysis of the
convergence of the series by focusing on properties of the
integrals.
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